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The problem of designing the supersonic part of a fixed-area propelling nozzle of opti- 
mum shape for a certain trajectory, taking into account the variation of flight and engine 

operation conditions is considered below. The aircraft is assumed to be a material point 
of variable mass, and its drag at any instant is considered to be equal to the correspond- 
ing stationary value. The same approach is used in the analysis of flow in the nozzle. 
This implies that at any instant pressure and other parameters are defined (in a coordi- 

nate system of the nozzle) by equations of stationary flow in conditions prevailing at the 
nozzle inlet at the particular instant. 

Besides the over-all results, a detailed investigation is made of two cases in which the 

use of the derived optimum conditions simplifies the solution of the problem. The first 
case occurs when throughout the flight the Mach number distribution at the nozzle inlet 

remains unchanged. It is found that in this case the optimum contour belongs to a family 

of contours corresponding to the solution of a variational problem with specified condi- 
tions. The second case is that of a plane and “short” nozzle with the flow at its inlet 
remaining throughout the whole flight uniform and supersonic. In this case the genera- 

trix of the optimum nozzle is a straight line, 
The problem of shaping the supersonic part of a plane or axisymmetric nozzle for 

maximum thrust at specified flow at its inlet and given external conditions has, to a great 

extent, been recently solved [l-4). The formulation of the problem given in the follow- 
ing is due to the fact that in many applications the variation of flight conditions and of 

parameters at the inlet to the considered part of the nozzle is quite extensive, and that 
the flow at the inlet may vary not only because of changing flight conditions but, also, 
owing to the control of engine opertation, We note, incidentally, that the control of the 

operation mode is a problem of its own dealt with in numerous publications (see, e. g. 

r5-71). 

1. Let us consider the plane motion of an aircraft, assumed to be a material point, 
in the atmosphere and in the presence of a gravitati~al field. We assume that the vec- 
tors V of aircraft velocit)r and X, of engine thrust coincide. let t be the time, m the 
aircraft mass, h and I the vertical and horizontal coordinates, respectively, 0 the angle 
of inclination of the trajectory to the horizon, G the mass fuel consumption per unit of 
time,and let V = IV\, X == 1x1 , and FT and F,, be the projections of vectors of 
external forces, respectively, on the tangent and normal to the trajectory. In this nota- 

tion the aircraft motion is defined by equations 

K,E m’_tG= 0, K,E V’--((x-FF,)/m=O 

K,zzIC-VsinO=O, K 4 3 8’ + F,, I mV = 0 (1.1) 
K,zl+- v eos 0 = 0 
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where the dot denotes a derivative with respect to t. 
All parameters in (1.1) are assumed to be dimensionless. If h,“, V,’ and flail are 

characteristic values of dimensions of length, velocity and mass, respectively, then !L and 
I are normalized with respect to h,“,velocity with respect to V,“, time with respect to 

he0 / V*‘, forces with respect to msoV*“2 i h,” and fuel consumption with respect to 

m*‘V*’ / h,O. For a plane aircraft all magnitudes here and in the following are assumed 
normalized with respect to its unit width. 

Let us consider the flow in a 
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0 
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Fig. 1 

assumptions the flow in region 

plane (v = 0) or axisymmetric (v =~ 1) nozzle (Fig. 1) 

whose axis or plane of symmetry is assumed to be at 
every instant tangent to the aircraft trajectory. Let xy 
be a system of orthogonal coordinates attached to the 

nozzle. The flow at inlet to the investigated part of the 
nozzle (x = 0) is assumed to be at every instant uni- 

form and supersonic (or sonic) and the gasnonviscous 
and not heat conducting. We confine our investigations 

to the case in which there are no shock waves in the 

region affected by the wall ab and bounded on the right 

by the characteristic fb of the first family. On these 
L)=D (t) bounded by segments da and od of the y - 

and x-axes, the characteristic db and the wall ab is at every instant defined by the 

equations 

L, E uy - 1?, = 0, L, S pux + pvII + up, -1 cpr, t- vpuy-1 = 0 (1.2) 

where p is the density, u and ti are projections of the velocity vector on the X- and 
y-axes. and the subscripts CL’ and y denote the related partial derivatives. Inertia forces 
produced by the acceleration of the aircraft have not been taken into consideration in 

(1.2). 
All quantities in (1.2) including the gas pressure p are dimentionless. Independent 

variables are normalized with respect to the dimensional coordinate !/rLli of point a, 

velocities with respect to UJO”, density with respect to p,,’ , and pressure with respect to 
pooWoo2 , where u+,O and poo are dimensional values of velocity and density at inlet to 

the considered part of the nozzle, i. e. I =: I! at a given instant. With this notation and 

on assumptions made with respect to conditions at 5 :- 0 , we have throughout the period 
of engine operation: V E 0, u g p G I, and the Mach number ;\I > 1. 

We further restrict ourselves to the case in which the equation of state and the expres- 
sion of specific enthalpy together with the conditions for isentropic and constant-energy 

transformations, which in these circumstances are satisfied in D for any stationary flow, 
as is the case of a perfect gas, yield the equalities 

P = P 04 ~4, P == P (w, pd (1.3) 

where w is the modulus of velocity, p. is the dimensionless pressure at z = 0 , the 

functions appearing at the right are known, and (~p/&~)~, == - pw and (C?p / a~)~,= 
- pwam2, where a is the speed of sound. 

Along the nozzle wall defined by equation J: = 5 (y) the no-leak condition 

is satisfied. LzEx’--uu/v=o 

Here and in the following the prime denotes a total derivative with respect to y iu 
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the appropriate direction. In accordance with the normalization of (1.1) and (1.2) we 

The dependence of po and k on V, h and G is determined by the type of engine and 

its working process, and is assumed to be known. The form of (1.4) implies that the 

momentum at the air intake (in the case of an air-breathing jet engine) is included in 

the aircraft drag F~. The component F, also includes the base pressure acting on the 

end face I E xb which may appear when the maximum admissible nozzle length is spe- 

cified. We assume forces F,and F,to be of the form 

FZ = F’ (V, h, rb, NJ + mg sin 0, F,, = F2 (V, h) + mg cos 0 , 

where P and F2;ire known functions, and subscript b denotes, as before, parameters at 

the co~es~nding point. These expressions imply that the external outline of the aircraft 

belongs to a certain two-parameter family dependent onxb and YJ. 

a. Let us formulate the variational problem. We assume that at the initial instant 
t = tr the coordinates I,, h,, and the aircraft velocity V,, angle t&and mass mrare 
known. We shall denote the values of parameters at t = ti by subscript i . We have 
to determine the contour of a fixed-area propelling nozzle x = 5 (ZJ) < X passing 
through the given point CJ and providing for specified aircraft parameters at t -= t, the 

maximum of a certain function CD of parameters t,, I,, ha, V,, 8, and mzat the end 
point t = t, of the considered section of the trajectory. When Cij = - t, we have 
the problem of time-optimal response, when @ = - ma that of minimum fuel con- 

sumption, when Q, = V, that of maximum speed, etc. The remaining parameters, 

or part of these may in these problems be specified at t = t, . 

The aircraft motion and the pressure distribution along the nozzle wall, and conse- 
sently alsO X , are determined in accordance with the equations and conditions of the 
preceding Section. Finally, G = G (t) is considered to be either a known function, or 
as the control function to be determined simultaneously with the nozzle shape from the 

condition for optimum of functional @.2~n the latter case we assume that Ginin < 
< G (t) < Gillax, where Gmin and Gmax are given constants. A flight with the engine 
shutdown is, also, possible when G - 0 and X z @fyy” / (1 + v), where p+ is 

the so-called base pressure (dimensionless). The selection of pOowOoa is made so as to 

have pf ES const. 

5. The necessary extremum conditions defining the optimum contour &, and if 
required, also, the control functiott G (t), are derived from the analysis of the first vari- 
ation of functional 

I = CD-+ \ ( $ 5Ji -I- i pl;dy + 11 (PJJ, .-t &) &XQ}dt (3.1) 

where ?L~ (t), b (Y, t) ~n~E~i,(5, y, ti 

D 

are Lagrangian multipliers. Within admissible 
variations (limits) the variations of functionals 1 and @ coincide. 

Applying to (3.1) the usual method of variation and of selection of Lagrangian multi- 
pliers. we find that the optimum contour is defined by conditions 

along ab (3.2) 
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(cont. ) 

11 

tr 

c * 
2 {F;, + ky” (IMU tg a - p)},, dt = 0 

tl 
where the second and third conditions determine X~ and Yg,respectively, and when xb -< 

.< X, the condition for x!, reduces to an equality. At t > t 3r where ts is defined below, 

we have in the integrands u = v = 0 and p = pf. 
The subscripts LC!,, y,, V, h , etc. denote in (3.2) and in the following the correspond- 

ing partial derivatives ; a == arc sin (a / w) is the Mach angle, and W = 3L,k / m. 
Multipliers & including multiplier aa are determined by the system 

m”VA,’ - h,V (x - FT) - h, V mg sin 0 + i&F2 = 0 

mV23L2’ + ;1,V2 {X (lnk)lr A- k (po)v - Fvl} + emV2 (p& + 

+ h,mV2 sin 8 + X4 (F, - VFv2) f h,mV2 cos 0 = 0 (3.3) 

mVA,’ + A2V {X (In kh + k @Jr, - F,,l} + ~~Tr(pd,, - V,,2 = 0 

VA,’ - h,Vg cos (3 -+ h,V cos 0 + h, g sin e - h,V2 sin e = 0 

where R E (ii’ In p I dp,),, and (8~ / ~?p~),,~ are calculated in conformity with (1.3). 

If any of the parameters m2, V2, . . . is free or is being optimized. the boundary con- 

dition for the multiplier Li introducing the related equation from (1.1) is of the form 

hl = - 'IJ,:,, liz = - QI',' h-3 = - aDh2, ha = -a(), (3.4) 
i”> = --‘D/, (at r = t2) 

and the value of t, is either given or is determined by condition 

{mV@& i- hlmVG - h,V (x - FS) - h,mP sin0 + h,~,, - h,mV cos 0}, = 0 (3.5) 

If any of the parameters at the end point of the trajectory is specified, the related 
multiplier hi at t = TV is not derived from (3.4) but selected so as to obtain a contour 
which would satisfy the particular requirement. 

It may happen that the specified :n = mz is achieved at I, < tp. We then have for 
2, < t < td a flight with the engine shutdown. In such case the first equation of system 

(3.3) is integrable for t -< t, only, and in (1.1) and (3.3) for t > t3 with G and XL 
omitted in (3.5). The boundary condition for AI is then of the form 

hlnzG - h, [;c] = 0 for t + t, 

where [xl is the sudden change of x at the instant of engine shutdown. Finally, if at a 
certain instant 1= tj function G (t) becomes discontinuous, the multipliers hi remain 
continuous at the point of discontinuity, except in the case of tj = t, considered above 
in which Ai is defined at t < t, only. 

Multipliers piand j-L.2 in the subregions of their discontinuity in B satisfy equations 

a$,, + p (as - U”) psx - pu”p2u + vpuuy-i pz = 0 (3.6) 

a2P1x + put+,, + p (v” - a”) p2y + VP (a” - v”) Y-l FL2 = 0 
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which have the same characteristics as the equations of flow. Along the characteristics 
the following relationships are satisfied : 

PI’ tg a T PZ’P zt wPp2 = 0 (3.7) 

Here and in the following the upper sign corresponds to characteristics of the first 

family and the lower to those of the second. 
Generally, the regions of continuity of ~1, are separated by lines of discontinuity which 

can be characteristics of the first or second family [a, 8. 91. If [pi] represents the dif- 
ference of piup- and downstream of the discontinuity (in the direction of the flow of 

gas), then the following relationship 

[Pi,1 + [PaI pctg a = 0 (3.8) 
is satisfied at the discontinuities. 

The boundary conditions which together with (3.8) are required for integrating (3.6). 

are specified at the nozzle axis, along the contour ab , and along the characteristic db, 
and are of the form 

p1 =0 for y=O, p1 = y’pv W along ab , (3.9) 

pl + &p ctg a = 0 along db 

Conditions (3.9) together with related equation of (3.7) make possible the determina- 

tion of pialong db. As the result we obtain that along & 

pl = JfCy'p ctg a, pa = - jf/cyv tg a I p (3.10) 

c = (y”pv%g c.%)b w2 

Here IV’ is the same as in (3.2), and the signs of roots are chosen in accordance with 
condition (3.9). 

In the case considered here the discontinuity of PioCCUrs along the characteristic ad, 
where 

[prl = - 1/Cy”p ctga, [Pa] = 1/W tg alp (3.11) 

with constant C and the signs of square roots being the same as in (3.10). 
In the plane case Y = 0 a discontinuity along ad and equalities (3.11) are unavoid- 

able, as seen from the juxtaposition of conditions (3.9) along the axis and of the first of 

formulas (3.10) with subsequent use of (3.8). It follows from (3.10) that in the axisym- 
metric case (Y = 1) the multiplier p1 along db tends to zero with decreasing distance 

from the axis. The discontinuity of ui along aci is caused by the discontinuity of plxat 

point d. Formulas (3.11) can be derived either as in [9], or by passing to limit in the 
examination of a nozzle with a cylindrical central body of radius r. Equations (3.9) 

and (3.10) remain valid for such a nozzle, if Y = r is substituted for Y = 0 and d’b 

for db , where d is the point of intersection of characteristic d’b of the first family with 
the central body. Hence along ad’ the equalities (3.11) remain valid for any r > 0. 
For sufficiently small T characteristics ad’ and ad virtually coincide, and the intensity 
of discontinuity of pi , defined by formulas (3.11). becomes independent of r at any 
arbitrary fixed v. This proves the vaIidity of transition to limit at r + 0. 

Let us assume that contour u b has been chosen for certain reasons. The simultaneous 

solution of Eqs. (1.1) and (1.2) together with related initial and boundary conditions 
makes it possible to determine the variation of aircraft parameters in terms of t , as 



1010 A. N. Kraiko and A. A. Osipov 

well as the distribution of flow parameters in the nozzle at any instant. This and the 
use of equations and conditions (3.3)-(3.11) permit, in turn, to determine hi (t) and 
11~ (.r! y, t), including h, and 11.’ which appear in the optimization condition (3.2). The 

verification of these conditions can be used as the basis of the procedure for designing 

the optimum nozzle. 

Any region which includes D as a subregion may be substituted in (3.1) for D . In 
particular, region D’ bounded by the contour oabco, which is independent of t , can be 

taken for such region. In this case the conditions along db are replaced by equalities 
;(I f ~LZ s 0 along cb from which, by virtue of (3.6) and (3.9), follows that !~i E 0 in 

the triangle d$c, and that d6 is the line of discontinuity of pi. As the result, for the 

determination of 11~ in I) we obtain along db the previous boundary conditions (3.10). 

There are of course circumstances in which shock waves are generated in the triangle 

dbc , in spite of fulfilment of the condition for vortex-free flow in D, which by itself 
substantially restricts the domain of applicability of this method of analysis. Neverthe- 
less, even in this case, a rigorous analysis with the substitution in dbc of equations of 

rotational flow for (1.2). and taking into consideration the relationships obtaining at 
shock waves, yields for lki ir: region I1 2nd at its boundaries the previously obtained 

results. 
Completing the analysis of the necessary conditions for maximum 4), we note that 

in optimizing the fuel consumption control function G (t) along with the shape of the 
nozzle, the former is selected on the basis of the condition for nonpositivity of the first 
variation ‘< 

6@ = \: yKdc + 2 SjAtj 
. 
21 j 

Here d = tj are the instants of resetting of G (t), and Q and S are defined by formulas 

where [Gl and [x] are sudden changes of G and X due to resetting of controls. 

It should be borne in mind when using this method that in accordance with (1.2) the 

flow in the nozzle is considered in a quasi-stationary approximation, Hence, if a spe- 

cified or obtained by optimization G (t) has points of discontinuity, the contour designed 

in conformity with conditions (3.2), will be close to the optimum (for a real nonstation- 

ary flow), only when the total relative time of fast transitory processes in the nozzle is 

short ( l ). Any so-called sliding optimum modes must be excluded for the same reason 
from consideration, when using this approach /JO]. 

4. Let us assume that for any possible variation of dimensional parameters at the 
nozzle inlet the dimensionless pressure p. or the Mach number (which for the gas con- 
sidered here is equivalent) are constant. This occurs, e. g. when the initial section of 
the nozzle coincides with its throat. We note, incidentally, that, when in this case at 
z = 0 the distribution of dimensionless velocities u and v is also invariant, the assump- 
tion of a uniform flow at the inlet section is not obligatory. 

Under such conditions the fields of dimensionless flow parameters in the nozzle, the 

characteristic net, and,.in particular, the closing characteristic d6 are the same at all 

*) The condition of validity of the quasi-stationary approximation must he, strictly 
speaking, formulated as a limitation imposed on 1 G 1. 
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points of the trajectory. Nevertheless multipliers i.~ appearing in condition (3.9) at the 
contour depend on t via function W (t) . 

Let us denote by a small circle superscript (not to be confused with dimensional para- 

meters) parameter values averaged over the time t of engine operation, i. e. over the 
period t3 - tl. We then integrate the equations and the boundary conditions for pi with 

respect to t , taking into consideration that the flow parameters appearing in these equa- 

tions and conditions are independent of t . As the result, we find that pi” satisfy the same 

equations and conditions as pi, if in (3.9) and (3.10) constant 
t, 

W”-_ ~___,.L_ 
t3 - t1 s 

w(t) dt 
ti 

is substituted for function W (tf . 

The first of the optimixation conditions (3.2) can now be written in the form of equa- 
tion (IV% - y-“~uuzo)’ = 0 along ab 

which after transformation becomes 

us0 = Yv (U -/- Cl) IS’” along ab (4.1) 

where CI is the constant of integration, 

It can be also shown that, as in &l]. (4.1) and the second of equalities in (3.9) written 
for ~1’ are the integrals of equations for pi” and, as a corollary, that the optimum con- 
tour ub belongs to a known family of optimum contours ensuring the maximum thrust 

for specified conditions at the inlet to the nozzle supersonic part and of back pressure, 
and maximum permitted [nozzle] length [l-4]. In accordance with the condition in 
(3.9) related to db and with the derived above integrals for u? which yield the solution 
of the problem of Lagrangian multipliers averaged over t in the triangle abf, the para- 

meters along segment fb of characteristic u:, of this family of nozzles satisfy the equa- 

lity yVp&g a = const along fb (4.21 

It can be shown, moreover, that 

u + u tg a + Cl = 0 along fb (4.3) 

where Cr is the same constant as in (4.1). 

By virtue of above considerations the optimum contour must be selected in this case 
from the family of contours for which equalities (4.2) and (4.3) hold, and the integral 
in the expression (1.4) for X is a function of ~b and !!b only. It can be shown that 

Xxir= k(2/YP~2 tg afat Xlrb = kg;: (P - PuV tg a)b 

hence the second and third of conditions (3.2) defining xb and 5% are rewritten as 
1, t2 

c ?a ‘F:b - xx,) dt >, 0, - 
i, m 

1 -$ (J’$ - xvb) dt = 0 
t1 

(4.4) 

All of the previous statements relative to formulas (3.2) and, in particular, that about 
flight with the engine shut down (t > t,) , remain valid. 

When a horizontal flight at constant velocity with the thrust equal to the drag and 
the lift balanced by gravity, and G (t) ss const , the expressions in parentheses in (4.4) 
are independent of t and can be taken out of the integrand. Under such conditions 6%’ 
is also independent of t and, consequently, A2 must be determined not by (3.3) and 
(3.4) but by condition 
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f, 

u . ii 
(XV - Fg) + q. df - G?y, = 0 

Let us now consider the problem of maximum flight range (Q, 
(3.3), (3.4) and (3.5) it can be shown that 

t! 

(4.5) 

I.&. With the use of 

If in this case the mode is stable, the expression in parentheses is negative, and conditions 
(4.4) become 

k (yypu2 tg u)l, - Fxb’ > 0, @Ia” (PUV t&l U -- Phi - f’yb . ‘z() 

6, Another case in which the design of a nozzle of optimum contour is substantially 
simplified is that when for tl < 1 < t, the flow at the nozzle inlet is supersonic and uni- 
form, the nozzle is plane (v = 0), and its maximum admissible length X such that the 

pattern shown in Fig. 2a prevails at every instant. A particular feature of this pattern is 
that the characteristic db, although varying in time, always intersects the whole beam 
of rarefaction waves generated in the flow by the kink at point a, and, also, its distortion 

due to variation of the Mach number at 5 = 0. The characteristics of the second family 
in this beam to the left of db are rectilinear, and the parameters along each of these 
characteristics (in particular along af) are constant. 

(a> 

J 

a 

i? ’ fb) 

Fig. 2 

It will be readily seen that for Y = 0 functions u, v, p, ~1 and h, dependent only 

on t but independent of z and y, satisfy the equations of flow (1.2) as well as Eqs.(3.6) 
for pi. A flow uniform with respect to z and y in the triangle abf satisfies also the 
condition of constancy of flow parameters realized in this case along uf. The multipli- 

ers 111 and pa in abf may be expressed in terms of gasdynamic parameters by using the 
conditions along ab and fb of (3.9). Since u and pa are independent of x and y, it is 

readily seen that 
(WU - nz)’ = 0 along ab 

Hence the first of the optimization conditions (3.2) is not only completely satisfied 
with respect to t but, also, at every instant of time. In this case the optimum contour 
is to be selected from a family of contours with a straight-line generatrix (Fig. 2b). The 
coordinates of the end point b of the contour ab must satisfy the second and third of con- 
ditions (3.2) which may be here presented in the form (4.4). Owing to the constancy 
of flow parameters in triangle abf and to the left of the first of the characteristics of 
the beam, region I) in the expression for e in (3.3) reduces to triangle afe. Multipliers 
Pi in the beam to the left of ef are constant along every characteristic of the second 
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family, and are defined by the values of parameters along ef found from formula (3. IO) 
for v = 0. We note, incidentally, that in this case 

8 = (&I - pa) (dP bl dP o) 

where (dpa I, dpo) is determined by formulas for flows past an obruse angle. 
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